

real time in situ chemical detection of underwater unexploded ordnance

Ross J. Harper Ph.D.

ICx Nomadics, 1024 S Innovation Way, Stillwater OK 74074

NEW THREATS. NEW THINKING.

underwater explosive signatures

UK dump sites

beaufort's dyke

beaufort's dyke disposal site

- deepest part of Irish Channel
 - 200-300m deep
- UK MoD dumped chemical and convetional weapons post WWII
 - 14500t of phosgene
 - estimated 1m tonnes total of assorted munitions
 - understood that much of the material missed the deep sections
 - reports of incendiary devices washing ashore in Scotland
- natural gas pipe line,
- proposed tunnel linking Scotland and Ireland

Halifax NS testing by Sandia NL

- UUXO that has been submerged for 53 to 82 years often produces a detectable signature.
- 59 water samples were analyzed.
 - 34 samples (58%) produced detectable explosives signatures.
- 27 sediment samples were analyzed.
 - 26 samples (96%) produced detectable explosives signals.
- concentrations ranged from 0.05 to >100 ppb
- concentrations decreased with increasing distance from the target.

chemical sensing in the marine environment

- initial handheld unit for proof of concept
- integrated to Foster Miller crawler
- developed a Remote Environmental Monitoring UnitS (REMUS) deployed with TNT sensor
 - demonstrated TNT detection in the marine environment
 - mapped a TNT plume
- integrated to SeaBotix LBV
- used the AFP mechanism to develop ultra-sensitive underwater TNT detection system

amplifying fluorescent polymers

the AFP technique

Analyte Molecule

vapor sensor schematic

San Clemente Island tests

- Divers successfully found TNT up to 30 meters from the source
- Diver operated up-current from the source for approximately seven minutes. This gives an excellent baseline with no TNT indications

nomadics [™]

January 2004 tests in Panama City, FL

SeaPup on crawler robot

SeaDog on the REMUS

MINIOP #3 April 2003 Duck, NC

REMUS and SeaDog undergoing buoyancy modification

SeaPup waiting for its next mission

real time plume mapping

this is the first ever Real-Time map of an underwater TNT plume. it shows a valid indication, position, and plume structure of an known source. minimum speed is approx 1 m/s, plume approx 1 meter wide.

anomalous source detection

3 of the 5 SeaPup missions show a second indication of TNT

ongoing test bed

- SeaBotix ROV
 - upgraded for high thrust, station keeping, 2 video cameras
- SeaPup underwater explosives detector
 - could include radiological detector for added IED detection

SeaPup / SeaBotix LBV

freshwater lake testing

ordnance reef

ordnance reef

preconcentration adds sensitivity

speed v sensitivity

- real time 1 ppb
 - plume mapping
 - active searching
- preconcentration 1ppt
 - anomaly interrogation
 - environmental monitoring

conclusions

- SeaPup sensor is capable of finding targets in the marine environment
- additional improvements that have already been demonstrated in the laboratory will make significant advances in the range of detectability
 - enhanced analyte sensitivity
 - better understanding of the nature of trace chemical signatures in the marine environment.

acknowledgements

- fellow nomads
 - Edward Knobbe
 - Matthew Dock
 - Steven Shaull
 - Chris Watson
 - Aaron Thompson
 - David Goad

- Office of Naval Research (ONR)
 - Linda Chrisey
- University of Hawaii School of Ocean and Environment Science and Technology (UH SOEST)
 - Roy Wilkens
- UH Hawaii Undersea Research Laboratory (UH HURL)
 - Terry Kerby
- SPAWAR
 - Vladmir Djapic & Rich Arrieta

questions?

www.nomadics.com

NEW THREATS. NEW THINKING.